

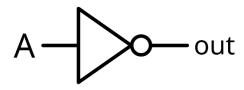
University of Sri Jayewardenepura Faculty of Computing CCS 1552 - Computer System Architecture

Experiment No: 01

Experiment: Exploring Logic Gates – The NOT Gate

1. Objectives

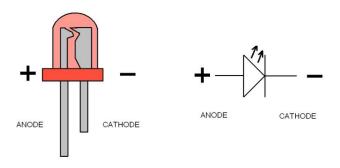
By the end of this lab, students will be able to:


- 1. Understand the function of the NOT gate (inverter) in digital logic circuits.
- 2. Build and test a NOT gate circuit using basic electronic components.
- 3. Learn correct LED connection and observe input-output behavior.
- 4. Develop basic skills in breadboard wiring and electronic troubleshooting.

2. Materials Required

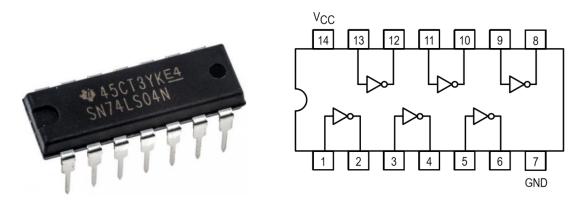
Component	Quantity	Notes	
7404 IC (Hex NOT Gate)	1	OR any NOT gate IC	
Breadboard	1	Standard size	
Jumper wires	10–15	Male-to-male	
LED	2	For input and output indication	
Resistor (1kΩ)	1	Pull-down resistor	
Resistor (220Ω)	2	For current limiting of LED	
Push button	1	Optional, for input control	
5V DC Power supply	1	Can use battery or lab PSU	

3. Theory


• A NOT gate inverts the input logic: HIGH → LOW, LOW → HIGH.

• Truth Table of NOT Gate:

Input (A)	Output (Y)	
0	1	
1	0	


• LED Basics:

- o LEDs are polarized components.
- o Anode (+): longer leg, connects to positive side.
- o **Cathode (-)**: shorter leg, connects to GND.
- Use a resistor in series to limit current and prevent damage.

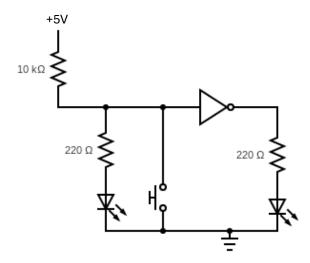

5. Circuit Diagram

Diagram 1: 7404 IC

Exp: 01 - Exploring Logic Gates

Diagram 2: NOT Gate Circuit with Push Button and LED

5. Step-by-Step Procedure

A. Setup IC

- 1. Place the 7404 IC on the breadboard, straddling the center gap.
- 2. Connect Pin 14 (Vcc) to +5V rail.
- 3. Connect Pin 7 (GND) to 0V rail.

B. Connect Push Button

- 1. Place push button across the breadboard gap.
- 2. Connect one side to +5V rail.
- 3. Connect the other side to input pin of NOT gate (Pin 1).

C. Connect Output

- 1. Connect output pin (Pin 2) to LED anode (long leg).
- 2. Connect LED cathode (short leg) through 220 Ω resistor to GND rail.

D. Test the Circuit

- 1. Press push button (Input HIGH = 1). LED should be OFF (Output LOW).
- 2. Release button (Input LOW = 0). LED should be ON (Output HIGH).

6. Observations Table

Input (A)	Input LED Status	Output LED Status	Output (Y)
0	ON		
1	OFF		

7. Activities

- 1. Single NOT Gate Test: Build circuit and fill truth table.
- 2. Series NOT Gates: Connect output of first gate to input of second gate and observe LED behavior.
- 3. LED Orientation Test: Swap LED terminals and explain why LED does not light in one orientation.
- 4. Build double-inversion circuit and verify output matches original input.

8. Questions

- 1. Explain the behavior of the LED for each input.
- 2. What happens when two NOT gates are in series?
- 3. Why is a resistor required in series with the LED?
- 4. How would the circuit behave if LED terminals were reversed?
- 5. Suggest real-life applications of a NOT gate.

9. Safety Instructions

- Do not exceed 5V for the IC.
- Ensure correct LED polarity.
- Handle breadboard connections carefully to avoid short circuits.
- Disconnect power supply when adjusting the circuit.